WEST VIRGINIA SUPER CIRCUIT (WVSC)

International Microgrid Symposium, San Diego, CA 17–18 September, 2009

Outline

- WVSC Project Overview
- Project Objectives
- Morgantown Developmental Field Test
- WVSC Project Technologies
- Technical Challenges
- Project Benefits

WVSC Project Overview

Team Members

- Allegheny Power PM
- Science Applications International Corporation (SAIC) Systems integrator, design, testing
- West Virginia University (WVU) Research Park Distributed generation
- <u>WVU Advanced Power and Electricity Research Center</u> Agent based controls development, modeling & simulation,
- North Carolina State University Fault location, fault prediction
- Augusta Systems, Inc. Communications network
- Tollgrade Communications Advanced sensors

Current Status

Negotiations between NETL/Allegheny Power. Expected project kick-off October, 2009

Project Objectives

- Achieve >15% peak power reduction; demonstrate that this can be done at a cost competitive with capacity upgrades
- Demonstrate the viability of advanced circuit control through <u>multi-agent</u> <u>technologies</u>
- Demonstrate the benefits of the <u>integrated operation</u> of rotary and inverter-based distributed generation (DG), energy storage, Automated Load Control (ALC), advanced wireless communications, and advanced system control technologies
- Use advanced operational strategies such as <u>dynamic islanding and micro-grids</u> to serve priority loads through the integration of ALC with advanced system control
- Demonstrate the reliability benefits of <u>Dynamic Feeder Reconfiguration (DFR)</u> across two adjacent feeders
- Leverage <u>advanced wireless communications</u> to address interoperability issues between control and protection systems and distributed energy resources (DERs)

Morgantown Developmental Field Test (DFT)

- Cost-shared demonstration project between DOE/NETL and Allegheny Power
- Goal: Major improvement in reliability, minimize labor cost associated with fault restoration
- Scope: Dynamic Feeder Reconfiguration System
 - Locate & isolate the feeder fault, restore service from adjacent feeders
 - 5,000 customers, two 138/12.5 kV substations, 668 distribution transformers, 29 MVA of installed capacity in two circuits
- Real-time monitoring of distribution circuits, remote control of automated switchgear
- Wi-Fi mesh communications network
- Site Acceptance Test completed in August, 2009
- West Virginia Super Circuit will build on one of the two DFT circuits

WVSC Demonstration Site

- Distributed Energy Resources
- 1.2 MW (3x400 kW)
 Biodiesel Internal
 Combustion Engines
 (ICE)
- 250 kW Microturbine
- 100 kW Solar Photovoltaic (PV) System
- 500 kW (2x250 kW), 8 hrs Energy Storage

Multi-Agent Grid Management (MGM) System

- West Virginia University/APERC will develop the algorithms for Multi-Agent Grid Management Systems.
- Autonomous controls
- The integrated operation of distributed resources, ALC and other intelligent electronic devices

Demand Response and Automated Load Control

- DR/ALC will be deployed to participating customers on the WR-3 circuit.
- The system will allow AP to control customer loads (A/C, water heater, etc) via advanced system automation

Low-Cost Distribution Sensors

- Nominal current,
- Surge and fault current,
- Relative voltage,
- Wire temperature
- Clamps to medium voltage lines via a standard hot stick
- Inductively coupled

Fault Location & Prediction

- North Carolina State University will develop the algorithms
- Analyze voltage and current signatures of many typical circuit disturbances that are intermittent in nature
- Identify circuit components that are beginning to fail
- Determine exact location of the disturbance

Dynamic Feeder Reconfiguration

 Expand the DFR system to
 additional feeders (WR-5/WR-8)

Technical Challenges

- Microgrid Operation Challenges
 - Seamless transition
 - Stability issues
- Optimal Placement and Sizing of DERs
 - Loss minimization
 - Recloser-fuse coordination
- Protective System Challenges
 - Bi-directional currents
 - Limited fault current magnitudes due to Power-Electronics
- Interoperability
- Cyber Security
- Wireless Communication Network Challenges
- Personnel Safety

Project Benefits

Metric	Multi-Agent Grid Management (MGM)	Dynamic Feeder Reconfiguration (DFR)	Demand Response (DR) & Automated Load Control (ALC)	Fault Location & Prediction (FLP)	Total
Peak Load Reduction	20%		10%		30%
Deferment of Capital Investment	600K		200K		
CAIDI	20%	20%	5%	5%	50%
SAIFI	20%	20%	5%	5%	50%
Loss Reduction	30%				
Labor savings (assoc. w/fault location)		75%		15%	90%
PQ event reduction	30%				30%
Capacity utilization of DER	50%				50%
Capacity utilization of feeder	25%				25%
NOx-Sox emissions reduction	10%		5%		10%

Thank you!